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Geometric Constant Defining Shape Transitions of Carbon Nanotubes under Pressure

Ji Zang,1 Andrejs Treibergs,2 Y. Han,1 and Feng Liu1,*
1Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA

2Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
(Received 12 August 2003; published 10 March 2004)
105501-1
We demonstrate that when a single-walled carbon nanotube is under pressure it undergoes a series of
shape transitions, first transforming from a circle to an oval and then from an oval to a peanut. Most
remarkably, the ratio of the area of the tube cross sections at the second transition over that at the first
transition appears as a constant, independent of the tube radius. Its accurate value is computed to be
G � 0:819 469, by formulating a variational geometry problem to represent single-walled carbon
nanotubes with a family of closed plane curves of fixed length and minimum bending energy. The
implications of such a geometric constant in designing nanotube electromechanical pressure sensors are
discussed.
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FIG. 1 (color online). Evolution of cross sections of armchair
SWNTs under hydrostatic pressure, obtained from MD simu-
lations. (a) (6,6), (b) (12,12), (c) (18,18) tube. The dark circle
tubes (purple online) mark the first transition from circle to
oval and the dark oval tubes (red online) mark the second
transition from oval to peanut. For all the tubes, the ratio of
cross-sectional area of the dark oval tube (red online) to the
a constant-pressure molecular dynamics (MD) method dark circle tube (purple online) is found to be constant.
The discovery of geometric relations and the calcula-
tion of geometric constants are among the very first
scientific activities by human beings striving to under-
stand nature. One well-known geometric constant is �,
the ratio of a circle’s circumference to its diameter. Its
discovery and calculation, going back thousands of years
[1], greatly stimulated the development of mathematics as
well as science in general. Geometry is also one of the
most fascinating and intriguing properties possessed by
carbon nanotubes [2]. The electronic properties of a car-
bon nanotube are intrinsically linked with its geometry,
in particular, its radius and chirality.

Here, we demonstrate the existence of a geometric con-
stant that defines the shape transitions of single-walled
carbon nanotubes (SWNTs) under hydrostatic pressure.
Computer simulations show that, when a SWNT deforms
under pressure, it undergoes two shape transitions: first
changing from a circle to an oval and then from an oval to
a peanut. Most surprisingly, the ratio of the cross-
sectional areas at these two transitions is found to be a
constant, the same for all SWNTs. The pressure-induced
shape transitions of SWNTs can be understood in terms of
the classical theory of elastic rings. We formulate a varia-
tional geometric problem, which confirms the existence of
a geometric constant that defines a closed plane curve of
fixed length changing from a convex (circle and oval) to a
nonconvex (peanut) shape maintaining the minimum
bending energy. The mathematical formulation allows
us to compute the accurate value of this geometric con-
stant to be 0.819 469.

Recently, there have been extensive studies of the
structural and mechanical properties of carbon nanotubes
under pressure [3–11]. We have performed computational
experiments to investigate the correlation between me-
chanical and electrical properties in SWNTs under hydro-
static pressure, in an attempt to design nanoscale tunable
pressure sensors [12]. We have simulated the equilibrium
shapes of armchair and zigzag tubes under pressure, using
0031-9007=04=92(10)=105501(4)$22.50 
[13]. Figure 1 shows the evolution of tube cross sections
with increasing pressure for (6,6), (12,12), and (18,18)
armchair tubes. (Similar results are obtained for zigzag
tubes.) The pressure induces mechanically two shape
transitions: first transforming the tube cross section
from a circle to an oval shape (dark, purple online) and
then from an oval (convex) to a peanut (nonconvex) shape
(dark, red online).

The first shape transition from circle to oval can be
understood by the continuum theory of the buckling of
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elastic rings [14–16]. The transition pressure depends on
the tube radius R as P1 � �3D�=R3 [14], where D is the
flexural rigidity of the tube. Our MD simulations confirm
that this relation does indeed describe the behavior of
SWNTs. This implies that continuum mechanics is even
applicable down to the smallest tube we simulated, whose
cross section contains only �10 atoms. It is interesting to
note that the classical buckling theory of elastic rings was
originally considered primarily for academic interest
[14–16], yet it has found new significance in the nano-
world, with potential technological implications.

Physically, the first transition is driven by competition
between compression and bending of a tube under pres-
sure. As a circular tube shrinks by reducing its radius, it
costs both compressive strain energy, due to reduced
perimeter, and bending strain energy, due to increased
curvature. Because it is easier to bend than to compress a
tube, the tube transforms spontaneously from an isotropic
circle to an anisotropic oval shape at a critical pressure
P1, and thereafter it no longer compresses (maintaining
its perimeter) but only bends (reducing its overall curva-
ture). Microscopically, this corresponds to the fact that it
costs less energy to change the bond angle than to change
the bond length.

As the tube continues to shrink, reducing its cross-
sectional area after the first transition, it must adopt a
shape that minimizes bending energy. This eventually
leads to the second shape transition from a convex oval
to a nonconvex peanut shape at a pressure P2. Most
surprising and interesting, this second transition is found
to occur always at a point defined by a universal constant
in relation to the first transition, independent of the
original tube radius.

In Fig. 2, we plot the ratio of the tube cross-sectional
area (A2=A1) at the second transition point (P2) to that at
the first point (P1). It appears to be the same (�0:82) for
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FIG. 2. The simulated ratio of tube cross-sectional area at the
second transition [dark oval tube (red online) of Fig. 1] to that
at the first transition [dark circle tube (purple online)]. It
appears to be constant �0:82, as indicated by the horizontal
line. The small variations of data are due to uncertainty in
determining the exact shape transition points in the simulation.
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all the tubes we simulated, ranging from (6,6) to (28,28)
for armchair and (10,0) to (35,0) for zigzag tubes. Figure 2
shows the results for tubes with radii from 4 to 14 	A. This
indicates the existence of a geometric constant, as the
second transition is a purely geometric transition without
changing the tube’s physical properties. Mechanically,
the first transition changes the tube from both compres-
sion and bending to pure bending, while the second
transition changes only the tube geometry from a convex
to a nonconvex shape, but the tube still deforms by pure
bending. Below we formulate a variational geometry
problem using a family of closed plane curves to represent
the SWNT shapes from the first to the second transition,
which confirms the existence of such a geometric constant
and facilitates numerical computation of its accurate
value.

Consider smooth embedded closed curves in the plane
� � R2, which bound a compact region � having a given
boundary length L0 and enclosing an area A. Among such
curves we seek one, �0, which minimizes the bending
energy, E��� �

R
� K

2 ds, where K is the curvature.We are
interested in the relation between the geometry of the
minimizer and the values of varying A.

We first realize that the problem is invariant under a
homothetic scaling of �0. If the curve is scaled to �0 �
c�0, its area, length, and energy change by A0 � c2A0,
L0 � cL0, and E � c�1E for c > 0. Consequently, the
shape of the minimizer, and, hence, any dimensionless
measure of the shape is a constant, independent of the
scaling. Thus, we confirm that, if SWNTs can be repre-
sented by such a family of closed plane curves, there must
exist a geometric constant that defines the SWNT shape
transitions by the dimensionless measure of the ratio of
area, A2=A1, with A1 and A2 being the areas at the
transition points.

The isoperimetric inequality says that the area of any
figure with a fixed boundary length does not exceed the
area of a circle; hence, the ratio of the area G � A2=A1

satisfies 0<G � 1, and G � 1 only for the circle.
Next, we describe a self-consistent procedure to compute
numerically the value of G that defines the convex-to-
nonconvex shape transition.

Let s denote arclength along the curve �0. The posi-
tion vector is X�s� � �x�s�; y�s�� and the unit tangent
vector is T�s� � �x0�s�; y0�s�� � � cos��s�; sin��s��, where
��s� is the angle T makes with the x axis, as shown in
Fig. 3. The prime denotes differentiation with respect to
arclength. The position can then be recovered by integra-
tion as X�s� � X0 	

R
s
0 � cos��t�; sin��t�� dt. The curva-

ture is K � �0�s�.
Assuming that the curve of the minimizer has re-

flection symmetry in both the x and y directions, we
only need to find � for 0< s< L4, with 4L4 � L0, over
a quarter of the curve (Fig. 3). It is necessary that ��L4� �
�=2 for the curve not to have corners at the reflec-
tion points. So the variational problem is to find a func-
tion �: 
0; L4� ! R such that ��0� � 0 and ��L4� � �=2
105501-2
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FIG. 4. (a) Numerical solutions of the variational geometric
curves with period of L0=2. The bold line marks the convex-to-
nonconvex transition with the minimum curvature K2 � 0.
(b) Same as (a) with period of L0=3.

FIG. 3. Coordinates for one quadrant of the closed plane
curve.
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satisfying Area��� � A4 � A=4, which minimizes the
bending energy E���. The corresponding Lagrange func-
tional is

L4
�� �
Z
�
K�s�2 ds��

�
A4 �

Z
�
xdy

�

�
Z L4

0

_���s�2 ds

��
�
A4 �

Z L4

0

Z s

0
cos��t�dt sin��s�ds

�
: (1)

The variational minimization of L4
�� leads to the fol-
lowing Euler Lagrange integrodifferential equation [17]

����s� � �
�
8

�
sin��s�

Z L4

s
sin��t� dt

� cos��s�
Z s

0
cos��t� dt

�
: (2)

Differentiating Eq. (2) gives the following curvature re-
lation [17]:

�K0�2 � c1K
2 	 c2 	

�K� K4

4
� F�K�; (3)

where c1 and c2 are integration constants.
The curvature must be an L0-periodic function for a

closed curve, which satisfies the nonlinear spring equa-
tion of Eq. (3). Because the curvature is continuous and
has reflection symmetry at the end points, it must also be
an even function at the end points, having K0�0� �
K0�L4� � 0. Thus, the noncircular periodic solution of K
having the largest period of L0=2 (i.e., the minimum
bending energy) must adopt an oval or peanut shape,
with the minimum and maximum curvatures at the end-
points of the quarter curve. Because the minimum K may
be negative, as in the peanut shape, the embeddedness of
the reflection is satisfied if K�0� � K1 is the maximum
and K�L4� � K2 is the minimum curvature around the
curve, as shown in Fig. 3.

As K and K0 vary, the parameters c1, c2, and � must al-
low solvability of Eq. (3). Moreover, F�K1� � F�K2� � 0,
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and given K1 � �K2 we have

c1 �
1

4

�
K2

1 	 K2
2 �

�
K1 	 K2

�
; (4)

c2 � �
K1K2

4

�
K1K2 �

�
K1 	 K2

�
: (5)

Since the possible homotheties and translations of the
same solution [shifts like K�s	 c�] have been eliminated,
the remaining condition on the constants of integration is
to ensure that the direction angle � changes by exactly
�=2 over �, i.e.,

��L4� �
Z L4

0
K�s� ds � �=2; (6)

which can be reduced to complete elliptic integrals.
Thus, the variational problem can be solved by choos-

ing a K2 and determining K1 self-consistently using
Eqs. (4)–(6). Figure 4(a) shows a set of numerical solu-
tions of curves with the largest period of L0=2 (n � 2), as
a function of ratio G. Most remarkable, we found these
curves match exactly, with a proper scaling, to those
contours of the tube cross sections of Fig. 1. Therefore,
the mathematical formulated shapes represent exactly the
pressure-induced SWNTs’ shape transitions.

In Table I, we tabulate the selected data of ratio (G), the
aspect ratio (X to Y), the maximum curvature (K1), and
the minimum curvature (K2), for some shapes from the
n � 2 solutions [Fig. 4(a)]. They are all single-valued
105501-3



TABLE I. Data of area ratio (G), aspect ratio (X to Y),
maximum curvature (K1), and minimum curvature (K2), for
shapes from n � 2 solutions, as shown in Fig. 4(a). The bold
line marks the data at the convex-to-nonconvex transition point
(K2 � 0).

G X to Y K1 K2

1.0 1.0 0.346 681 0.346 681
0.969 301 0.747 252 0.500 311 0.2
0.911147 0.598 089 0.615 898 0.1
0:819 469 0:458 052 0:745 404 0
0.688 845 0.319 027 0.759 399 �0:1
0.5069 0.168 724 0.773 624 �0:2

P H Y S I C A L R E V I E W L E T T E R S week ending
12 MARCH 2004VOLUME 92, NUMBER 10
monotonic functions. The point of K2 � 0 defines the
transition from convex oval to nonconvex peanut shape,
giving G � 0:819 469, the geometry constant we are
searching for.

There are other possible solutions with K having a
smaller period of L0=n with n  3. We note that we
must have at least n � 2 (four critical points of curvature)
because of the Four Vertex Theorem for closed plane
curves [18]. Figure 4(b) shows solutions for n � 3.
However, the calculated bending energies for this family
of solutions (as well as other families with larger n) are
higher than those for the n � 2 family.

It is rather remarkable that the discovery of a geometric
constant, an ancient scientific endeavor, is brought out in
the study of carbon nanotubes, a modern research topic.
Conversely, such an ‘‘ancient-type’’ discovery has impor-
tant implications in modern science and technology. One
area of impact is the very place where it was discovered,
as the constant is a critical parameter that defines quan-
titatively the shape transitions of nanotubes under pres-
sure. For example, we have found [12] that the further
increase of pressure beyond the second shape transition
will induce an electrical transition in the tube: A metallic
armchair tube becomes semiconducting. Such correlated
mechanical and electrical transitions provide the basis for
designing electromechanical pressure sensors. The pres-
sure and the cross-sectional area at the transition points
are related, by definition of modulus, as P1 � P2 �
Mb ln�A2=A1� � Mb lnG. Here Mb is the bending modu-
lus, because only bending deformation occurs from P1 to
P2. Moreover, the transition pressures scale with tube
radius, as P1 � 1=R3 [14]. Thus, it is possible to sense a
different range of pressures by using tubes of different
radii [12]. The constant G provides then a key parameter
in calibrating the pressure range of the sensor.

Several pressure experiments [3–9] have been done
on bundles of nanotubes and some [5,9] indicated the
flattening of tubes under pressure, in analogy to the first
transition we predict here for the single tube. However, in
a bundle of tubes, the intertube van der Waals interaction
influences also the tube shape. Therefore, a future pres-
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sure experiment on a single tube is awaited to confirm our
prediction.

In conclusion, we discover a universal geometric con-
stant that defines quantitatively shape transitions of
SWNTs under hydrostatic pressure, from both molecular
simulations and variational geometry analysis. Although
such a constant is discovered for carbon nanotubes, it
should universally govern shape transitions of any type
of tubes under pressure. Furthermore, we expect similar
shape transitions to appear in three dimensions for closed
surfaces, such as human red blood cells [19,20], fluid
membranes [21], and container walls [22]. All these
physical objects are believed to adopt shapes controlled
by minimizing bending energy, the context within which
the discovered geometry constant occurs universally.
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